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The filling-in theory of brightness perception has gained much atten-
tion recently owing to the success of vision models. However, the the-
ory and its instantiations have suffered from incorrectly dealing with
transitive brightness relations. This paper describes an advance in the
filling-in theory that overcomes the problem. The advance is incorpo-
rated into the BCS/FCS neural network model, which allows it, for the
first time, to account for all of Arend’s test stimuli for assessing bright-
ness perception models. The theory also suggests a new teleology for
parallel ON- and OFF-channels.

1 Introduction _

Light intensity reflected from a surface changes dramatically with change
in illumination, but the ratio of intensities (contrast) reflected from ad-
jacent locations remains essentially constant. The visual system extracts
the contrast ratio from the distribution of light hitting the retina by lo-
cal differencing mechanisms of two types: on-center/off-surround detectors
that respond maximally to a light spot surrounded by a dark annulus,
and off-centerfon-surround detectors that respond maximally to a dark spot
surrounded by a lighter annulus. These two distinct populations appear
at retinal ganglion cells that project to the visual cortex.

Given that the information sent from the retina to the brain is primar-
ily about local luminance and color contrasts rather than about extended
areas, why do we experience object surfaces, rather than mere edges?
One explanation is that information from the edges “flows” across the
areas that correspond to uniform surfaces, filling them in with features
such as color and brightness. Numerous examples of filling-in phenom-
ena appear in the clinical literature: from retinal scotomas (Gerrits and
Timmerman 1969), and from experimental work using stabilized images
(Krauskopf 1963; Gerrits et al. 1966; Yarbus 1967). There is also a grow-
ing literature on the filling-in of texture information from human psy-
chophysics (Ramachandran and Gregory 1991; Ramachandran ef al. 1992)
and from single unit recording (De Weerd et al. 1993).
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2 Models

Gerrits and Vendrik (1970) developed a qualitative model of the filling-in
phenomenon by specifying a filling-in process that works in parallel with a
filling-in barrier mechanism. According to their filling-in theory, the ON-
and the OFF-responses, which peak on opposite sides of a contour edge,
fill in over areas that correspond to uniform regions of the stimulus. Mix-
ing of the antagonistic activities is prevented by a boundary, or barrier,
that is created at the locations where contrast is high (edges). Grossberg
and his colleagues (Grossberg 1983; Cohen and Grossberg 1984; Gross-
berg and Todorovi¢ 1988) have mathematically specified a neural net-
work model of filling-in called the boundary contour system/feature contour
system (BCS/FCS) model that instantiates the filling-in theory of Ger-
rits and Vendrik (1970). The BCS and FCS systems work in parallel:
the FCS discounts variable illumination and the BCS generates an emer-
gent boundary segmentation of a scene. The signals from these two
systems interact to create visible percepts by filling in surface features
within segmentation boundaries. Studies of the temporal dynamics of
the BCS/FCS model under visual masking conditions (Arrington 1994a)
strongly support the Stoper and Mansfield (1978) conjecture that area-
suppression masking is mediated by a sluggish high level filling-in sys-
tem that follows the fast low-level system mediating contour-suppression
masking,.

Arend (1983) presented a set of test stimuli for assessing brightness
perception models. Though the BCS/FCS model has proven successful in
predicting the brightness percepts of a variety of stimulus distributions,
its ability to account for Arend’s complete set has never been demon-
strated. This failure occurs because the theory and the model have never
dealt adequately with transitive luminance stimuli, in other words, stim-
uli that have successive contrasts in the same direction: for example, a
staircase of luminance steps, as in Figure 1.

This paper describes an advance to the filling-in theory, called direc-
tional filling-in (DFI). According to DFI, local contrasts build upon the
foundation of surrounding brightness levels, rather than being isolated
by surrounding boundary signals. The DFI theory is implemented by
modifying the BCS/FCS model to include a directional filling-in gate (DFIG)
that is explained later. Model performance is evaluated using a variety of
stimuli. For each stimulus, the brightness predictions from the Grossberg
and Todorovi¢ (1988) version of the BCS/FCS model (henceforth referred
to as the GT88 model) and from the BCS/FCS with directional filling-in
gates (henceforth referred to as the DFIG model) are compared. The
GT88 model was chosen for comparison because it is arguably the best
known example of traditional filling-in theory and because it has served
as a common starting point for a number of derivative models (for ex-
ample, see Neumann (1993) that is discussed later). It will be shown
that the DFIG model accounts for all stimuli in Arend’s set for evaluat-
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Figure 1: Illustration of transitive luminance steps. This pyramid stimulus
illustrates the type of successive increments (or decrements) in luminance that
have been problematic for filling-in theory.

ing brightness models, including those with transitive relations—such as
multiple cusps and steps, and cusp-separated pedestals—for which the
GT88 model does not account, while retaining the ability to account for
the Tolhurst effect (Tolhurst 1972).

3 The Theory of the Directional Filling-in

A schematic comparison of the traditional Gerrits-Vendrik-Cohen-Gross-
berg filling-in theory to the DFI theory is shown in Figure 2. Notice
that the FCS response depends only on local stimulus contrasts. Con-
sequently, brightness predictions, which are manifest as filled-in activi-
ties, depend only on the brightness (darkness) signals contained within
a region that is partitioned by the associated boundary. This brightness
prediction scheme effectively isolates the input contrast responses in one
part of the visual field from those in another part of the field, forming
“watertight,” noninteracting compartments. Successive luminance steps
will tend to appear the same brightness because each isolated brightness
and darkness response is identical (see Fig. 2).

To overcome the isolation, DFI specifies that each local brightness step
builds upon the foundation of previous brightness levels. In a comple-



Directional Filling-in 303

mentary fashion, the darkness also builds upon itself in the activation
levels of the OFF-channel filling-in layer. This is accomplished by in-
jecting the lower brightness (darkness) levels up into areas of greater
brightness (darkness). Figure 2b illustrates how these signals build upon
one another in parallel in the ON- and OFF-filling-in layers.

One possible neural implementation of the DFI theory is illustrated
in Figure 3. In this model, the upward flow is instantiated by lateral
synaptic connections that are facilitated by simple-cells sensitive to the
appropriate direction of contrast. Figure 3 (top) shows a luminance stim-
ulus contrast; just below are the FCS ON- and OFF-responses to local
contrast. Next are the simple cells’ responses to oriented contrasts. Op-
posite direction-of-contrast simple cells with the same orientation are
added to create a complex cell response that is the BCS boundary to
filling-in. In the GT88 model (and presumably in the Gerrits and Ven-
drik theory, though this is never specified), the boundaries to filling-in
are insensitive to direction-of-contrast information, whereas in DFI, the
direction-of-contrast information is retained and utilized. Cells S; are
filling-in layer cells, whose lateral connections allow diffusive filling-in
of feature information. This diffusive filling-in is restricted by boundary-
modulated gates, G. Given the stimulus pattern at the top of the figure,
a high resistance gate signal (black vertical bar) would form between
filling-in layer cells S; and S;,;. Since the stimulus is a step up to the
right, the directional gates, U (indicated by white terminal buttons), are
active, which facilitates ON-channel activation of cell S;;, by cell S; via
the rightward directed axon projection (white arrow), and OFF-channel
activation of cell S; by cell S;., via the leftward directed axon projection
(black arrow). This type of system can function properly only if both
ON- and OFF-responses operate in the same manner, and suggests an
important new role for this parallel system, which is discussed further
in Section 5.1.

The DFIG mechanism complements the diffusion mechanism that is
restricted at the boundaries. It is of interest just how beneficial the ad-
dition of this local DFIG mechanism can be to generating accurate global
brightness predictions.

4 Comparison of Model Equations

First the GT88 model is fully explained, then the DFIG augmentation
is elaborated. Both neural network models consist of a series of feed-
forward layers beginning with an input layer, I;, where the luminance
stimuli are presented, and followed by a series of neural processing lay-
ers. The last neural layer, Oj;, is the output of the model, which shows
the predicted brightness perception. The activation of the neurons is de-
termined by differential equations, as described below. The models do
not differ substantially in the FCS layer (Section 4.1) or the BCS layer
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Figure 2: Schematic comparison of traditional filling-in theory (a) to directional
filling-in (DFD) theory (b) using transitive luminance steps. The input (top row)
is the same to both models, as are the ON- and OFF-responses and the boundary
responses. The main difference appears at the filling-in stage. In the traditional
theory, contrast information is partitioned by the boundary signals so equal
ON- and OFF-signals will cancel to produce a net eigengrau brightness percept.
In the DFI theory, activity is injected across boundary partitions in the direction
of increase. That is, where brightness increases, brightness signals are injected
across boundaries to form a brightness floor in the next region, against which
the next brightness signal can deflect. In a complementary fashion, successive
darkness signals build upon one another. The result is that DFI produces a
more accurate brightness prediction.
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Figure 3: A physiologically plausible neural model using directional filling-in
gates. Cells §; are filling-in layer cells; lateral connections allow diffusive filling-
in of feature information. This diffusive filling-in is restricted by boundary-
modulated gates, G. Given the stimulus pattern at the top of the figure, a high
resistance gate signal would form between filling-in layer cells 5; and S, ;. Since
the stimulus is a step up to the right, the directional filling-in gates, U (indicated
by white terminal button), allow brightness activation to flow rightward in the
ON-filling-in layer and darkness activation to flow leftward in the OFF-filling-in
layer.
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(Section 4.2); compare Figure 2a and Figure 2b. As far as possible, the
DFIG equations have been kept identical to those for the GT88 model.
The important difference between the GT88 model and the DFIG model
appears at the filling-in layer (Sections 4.3 and 4.4).

4.1 Feature Contour System. The FCS specifies how a light stim-
ulus to the eye is sampled by ON- and OFF-channel retinal ganglion
cells through a center/surround receptive field anatnmy The network
equations used to model the retinal ganglion cells, x', are shown in
equations 4.1 and 4.2. The superscript, (c), indicates the channel, that is,
whether it is an ON-center cell or an OFF-center cell. Parameters P,, D,,
and H, are the passive decay rate, depolarization limit, and hyperpo-
larization limit of the neuron, respectively. For the on-center/off-surround
cells the variables 1™ and ™™™ are the total excitatory and total
inhibitory inputs to the neuron, respectively, such that

ON)
d.".‘{ ] Iy -onte 4 N L+ plsurro
:;r _ —P\.\'LUM + (D. = x:f)\_ ”::mu” = L\_u{_:??\u + H\ ”I.J. urround ) 4.1
These are reversed for the off-centerfon-surround cell
{ ,|_l_;!i-'l-'s - -
:” 2 _PII:!‘()I-M n {D‘ s :';ji-[—s}l'l,!fmmundl
— (x |Ul}\ h( ”[Lt‘nl\ra (4 2)
These total inputs are specified as
I =W, D ll’j;;:: ] 4.3)
P
where W, is the weighting coefficient and

v :,:;,,' = exp{—A2(log[2))[(p — i)* + (g — j)*]} 4.4)
is the gaussian distribution that specifies the center and surround recep-
tive fields, which compose the difference of gaussians (DOG) receptive
field. Parameter A, in equation 4.4 specifies the spatial bandwidth of the
gaussian receptive field.

The equilibrium response of equation 4.1 is

AON) ‘—'!"ft'DW llr‘ HW ) i IW

it i =
Py, (WU Wt 4
= i iy P
where r indicates center and s indicates surround.
The FCS output is the half-wave rectified cell potential
XV = max(x{°V. 0) (4.6)

That is, the cell fires at a rate proportional to the depolarization level,
but is silent when the cell is hyperpolarized.
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4.2 The Boundary Contour System. The BCS generates an emergent
boundary segmentation of the scene. First cortical simple cells detect colin-
ear contrasts, then complex cells combine the same orientation, but oppo-
site direction-of-contrasts responses from the simple cells. At each spatial
location, activations from complex cells of all orientations are combined
to form a total boundary signal that is passed through a compressive nonlinear
(sigmoid) transfer function to produce the final boundary signal.

The first stage of the boundary system, equation 4.7, specifies a model
“simple cell” that responds to oriented activations across the field of
X;;. The activities y;; of the oriented contrast-sensitive cells centered at
location (i.]) with orientation k, obey the additive equation

1y, ;
AYijk _ Sy Z X (ON) (k) (4.7)

d! o P paqn
Equation 4.8 specifies the oriented receptive field, fb:,f},’-j, of orientation &,
which is created using a difference-of-offset-gaussians (DOOG), as fol-
lows. The gaussian kernel that forms the negative part of the oriented
contrast detector is spatially offset from the location of the detecting cell
by vector (—my, —mny),

(k

d’jki:f — r";’!-’-fi-f-i —_— (."i"-Hi-“—’”J.]-U—"LJ (4.8)
where
bpii = exp{—7"*[(p — )* + (4 = )’} 4.9)
and where
2wk
m; = sin a (4.10)
and
2k
N = oS % (4.11)

where K is the total number of differently oriented contrasts.
The potentials from the set of orientation sensitive cells, y;;, are half
wave rectified to obtain

Y:,rk = max{yuk- 0) (4.12)

The rectified potentials of the two “simple cells” with the same orienta-
tion, but with opposite directions of contrast, are linearly combined to
form a “complex cell,” by, that is sensitive to orientation, but insensitive
to direction of contrast,

bij = Yij + Yijg+k/2)] (4.13)
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The output from these cells is threshold rectified,
B,‘;‘k — max(h,-,-k —L, 0} (4.14)

where parameter L specifies how much contrast is required before a
boundary signal is created. A total BCS signal, Bj; (without subscript
k), is created by summing the response of all the oriented boundary sig-
nals, Bjj (with subscript k), at location (i.j)

Bj =3 B (4.15)
7

The final BCS signal is insensitive not only to direction of contrast, but
also to contrast orientation.

In some simulations published in Grossberg and Todorovi¢ (1988) the
boundary signal was transformed

B = s(Bii) (4.16)
through the compressive nonlinearity
s(x) = kix? [ (k2 + x°) 4.17)

(Grossberg and Todorovi¢ 1988, pp. 262, 277). This type of transfer func-
tion is used to render the boundary signal more uniform in size and to
more effectively reduce the diffusion between boundary compartments.
All GT88 simulations here use By to extend the useful contrast range.

4.3 The GT88 Model Filling-in Process. Finally, the FCS and BCS
provide parallel input to the filling-in layer. The ON- and OFF-activations
flow into each other and cancel except where flow is impeded by high
resistance boundary signals. The FCS signals, XL-ON' and ijom, which are
active only at locations immediately adjacent to stimulus contrasts, are
fed into the filling-in layer where the activity freely spreads across neigh-
bor cells. This diffusive filling-in process is impeded by high resistance
gating signals, G,,;, between locations (i.j) and (p.q) that are activated
by BCS boundaries. The equation for the filling-in layer potential, S;;, is

ds;;’
i (<) (<) (c)
? — —PSS”- 1 Xijt + F”- (4‘18)
where Ps is the passive decay rate constant, the X, term is the direct input

from the FCS, and the F;"’ term is the lateral diffusion (filling-in) term

FlY = Z (S = S:':])Gf"ifr] @19)

1 g
(pag)EN;;

The term (S, — S;) in equation 4.19 is a discrete approximation to the
Laplacian diffusion operator, since the set Nj; of locations comprises only
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the lattice of nearest neighbors of (i.j)
Ni={(i,j—1).(0=1.).(i+1.)).(j+1)} (4.20)

The diffusion gating coefficients, G,,;;, that regulate the lateral spread
of activation are the same for each channel (c) and depend on the spatially
adjacent BCS signals, B;; and B, as follows:

G - (4.21)

M1 + &(Bpg + Bjj) ’

Parameter ¢ controls the rate of diffusion. A large value will allow
rapid diffusion from the edges across uniform areas, which results in
a smoother appearance. A smaller value will cause input activation to
accumulate where it is input near the boundaries. Parameter = controls
the diffusion across boundaries. A large value allows little diffusion
across boundaries.

The GT88 model used only X;(°N. By making the excitatory center
more heavily weighted than the surround (i.e., unbalanced), the :(i,ON}
contained a large positive dc response, i.e., the response to uniform areas
was well above zero. Consequently, there was little rectification (equa-
tion 4.6) of the hyperpolarization associated with the dark side of a con-
trast. This allowed the hyperpolarizations to be used in the stead of
OFF-responses. As long as the input contrasts are not too large, this
corresponds adequately and avoids computing parallel ON- and OFF-
signals in subsequent stages, as well as avoids the need to recombine
them. For conformity to previously published work, as well as for fair
comparison of models, the GT88 simulations use the original model. The
DFIG model performs better with a balanced DOG; nevertheless, by the
same argument, the DFIG simulations use

X = max(-x ™, 0) 4.22)

if

Grossberg (1987b) makes it clear that the BCS/FCS theory calls for
parallel ON- and OFF-filling-in channels. In general, the brightness per-
cept output of the model, Oy, is assumed to be additive such that

05 = SEJ{JNJ - S:J_()FI—'J 4.23)

Nevertheless, the GT88 model simulations used only S'“N. As will be
seen next, the DFIG model requires that the ON- and OFF-filling-in chan-
nels be calculated separately.

4.4 Directional Filling-in Gate Equations. The DFIG model is the-
oretically equivalent to the GT88 model, except for the addition of the
directional filling term, ], in the filling-in equation, which now becomes

LIS:-I-CJ
dt

- _psggfv-‘ b Xf-f’ + F}f’ + i (4.24)

I
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where

(c) clc) (c) =
Jrif = Z [S}u;l X upf;a’_a] (423)
(pgleN;
(c)
_'rlr !
whereas the gate G,,;, used in term FL-” (see equation 4.19), does not.
The directional gate that allows activation to flow upward to areas of
increasing brightness or increasing darkness is modeled as

The directional gate U::;}-, used in term [, depends on the channel (),

ul. = g(Xi — X© — Oux)h(BpgBij — fug) (4.26)

paif — i T g

To fix ideas, equation 4.26 says: activate directional flow where there
exists a sufficient boundary, 1(B;B,; — f5), and where the feature signal

shows an increase of activation (brightness or darkness), g(X|~ X' —6ux).

The directional filling-in term, SMU:,:;:}, injects activation proportional to

the lower side, S,,, according to some function of the feature signal mag-

nitude, Uf,;:j. Note that in the case where g(x) is always zero, equation 4.24
reduces to equation 4.18. In the simulations presented here, the simplest

directional function is chosen

ky — If (x = 0)

8(x) = { 0 < otherwise 4.27)

and the boundary function, h, is the unit step function at zero.

The boundary gates and the directional gates are complementary.
Where there is no border present, G, is significant and large, which
allows passive diffusion through term F;, but U, is insignificant; on
the other hand, where a border is present, the directional gate, U, is
significant and allows flow through term J;, but G, is insignificant and
resistance is high.

4.5 Simulation Methods. The DFIG simulations presented here are
designed to evaluate the DFI theory and to build intuition about it. To
facilitate these goals, the simulations employ an ideal implementation of
the DFIG projection field that is a single filling-in cell wide. (In general
this would not be the case, as is elaborated in the discussion.) Conse-
quently, the simulations require very sharp and precise boundary signals.
Specifically, the additive difference-of-offset-gaussians (DOOG) equation
in the DFIG simulations is

by = (Z x;PNJT,,J) (Z x;,‘”“‘rp,-) (4.28)
P P
where each kernel, T, is {1.1.1}. This signal is then thresholded

Bjx = max(b;z — L.0) (4.29)
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as in equation 4.14 and transformed as in equation 4.16, to become

Biix = s(Bix) (4.30)

A sharper diffusion gate, G, between two filling-in cells is obtained by
multiplying, rather than adding, the adjacent boundary cells, such that

; 8
gij = T 431
GI” 1+ BMB,} ( )
The expanded one-dimensional DFIG equation is
d &0 &lc) &le cle)y A Se)g gle) (c)
289 = P + 3 (819 - 596y + SPU] + X (4.32)

peN
The steady-state solutions can be found by solving the linear system
MS=X (4.33)

where M is a banded system matrix, which in the one-dimensional case
is of the form

= _SJ'—[(GE.J' 1+ uu -l_] + SJ(P‘: BN Cf.[—l =+ G:.J-—]]
- Sin1(Giis1 + Uijpn) (4.34)

&

The DFIG kernels were numerically normalized (such that the sum of
the kernel elements equals unity) then multiplied by 100. The remaining
parameters in the equation were chosen such that spatially uniform stim-
uli yield a zero response, specifically (DW, — HW,) = 0. Normalization
assures a completely balanced center and surround, which helps guaran-
tee symmetric ON- and OFF-responses. In all simulations, these spatial
bandwidths of the excitatory and inhibitory kernels of the receptive fields
are the same in both the GT88 model and the DFIG model.

To help isolate and illustrate the key concept of the DFI theory, the
filling-in layer diffusion parameter, §, was increased so as to produce
more uniform brightness levels within bounded areas. This also helps
reduce perceptual illusions from the line levels in the simulation results.
All parameters are listed in the Appendix; they were the same in all
simulations in this paper.

5 Comparison of Brightness Prediction

Brightness predictions of the GT88 model and of the DFIG model are
compared using a variety of luminance stimuli. The one-dimensional
stimuli should be understood as profiles cut through the two-dimensional
brightness displays that historically have been created by rotating disks
(Cornsweet 1970). Both the theory and the model can easily be extended
to two dimensions.
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5.1 Parallel DFI Channels: The Pyramid. The staircase pyramid lu-
minance stimulus, shown in Figure 4a, is particularly useful in illustrat-
ing the behavior and the power of DFIL. The luminance steps consist of
equal ratio increments so the contrast for each step is the same and the
FCS response to each step is identical, as shown in Figure 4b. The BCS
signal is shown in Figure 4c. Traditional isolated filling-in occurs ev-
erywhere except at boundary locations, as indicated by diffusion gate
activity shown in Figure 4d. The rightward and leftward DFIG activities
for the ON-channel are shown in Figure 4e and Figure 4f, respectively;
the OFF-channel DFIG activities are the same except that their locations
correspond to locations of increasing darkness.

Notice the systematic compression in the ON- and OFF-filling-in lay-
ers, which occurs with a succession of steps in the same direction. Each
brightness increase in the ON-channel, Figure 4g, is increasingly small
(signal compression), but the same effect is occurring in the OFF-channel,
Figure 4h, where each increase in darkness is successively smaller. When
these two nonlinear channels are additively combined, the systematic bi-
ases tend to cancel! This suggests a new theoretical reason for the exis-
tence (teleology) of parallel ON- and OFF-channels. The result is a more
accurate, linear brightness prediction by the DFIG-model, shown in Fig-
ure 4j. The GT88 model predicts only flat brightness steps, Figure 4i.

5.2 A Battery of Test Stimuli. Arend (1983) presents a set of lumi-
nance stimuli developed by O’Brien (1958) and Cornsweet as a test set
for assessing brightness perception models. These stimuli are contained
in Figure 5 together with the Tolhurst stimulus, Figure 5g, and a bull’s
eye stimulus, Figure 51. The luminance stimuli and the associated human
psychophysical brightness percepts are shown in the first two columns;
the last two columns show the brightness predictions of the GT88 and
DFIG models, respectively. Each of the Arend (1983) brightness predic-
tions in the DFIG set and in the GT88 set was scaled as a group so the
abscissa and ordinate values are the same for each.

The eight top rows, Figure 5a-h, show correct brightness predictions
by both models. The last four rows, Figure 5i-l, show cases where
only the DFIG model makes acceptable brightness predictions. Figure 51
shows a saw-tooth stimulus that produces a bull’s eye brightness per-
cept (Arend et al. 1971). Here, the gain of the GT88 brightness prediction
has been amplified to illustrate an interesting brightness inversion that
can occur in the center ring. This inversion was considered a success by
Grossberg and Todorovi¢, who argued that when using small patterns
on large backgrounds, their informal psychophysical observations were
in the same direction as the simulation results. However, Arend could
not find such effects when he used larger stimuli.’

'See Grossberg and Todorovié (1988) pp. 261-262 for a discussion of this.



Directional Filling-in 313

(a) Stimulus (b) FCS signal
T N
(c) BCS signal (d) Diffusion

L[] [T |
(e) Right ON-DFIG (N Left ON-DFIG
|
(g) ON Fill (h) OFF Fill
_I_I_,_;—’_‘—\_‘_‘_\_ ‘\—\_\_‘_\_J_,_‘_l—’_
(i) GT88-model (j) DFIG-model

T T T

Figure 4: Experiment using staircase luminance stimulus (pyramid). The stim-
ulus consists of equal ratio luminance increments. The rightward and leftward
DFIG activities are shown for the ON-channel. Notice how the compressive
nonlinear activations in the ON- and OFF-filling-in layers cancel to produce a
linear brightness increase percept in the DFIG model.

6 Discussion

The results show that DFI provides accurate perceptual brightness pre-
dictions for a wide variety of luminance stimuli, particularly where tran-
sitive luminance distributions exist. Moreover, this is accomplished at a
single spatial scale! The model requires, and thus provides rationale for,
separate ON- and OFF-channels. Next, the distinction between the DFI
theory and possible DFIG model implementations is elaborated. Finally,
a comparison between DFI and alternative approaches to the problem of
brightness prediction is discussed.

6.1 Implementation Issues. This study was designed to test the the-
ory of DFIL To facilitate a focused study of the DFIG behavior across tran-
sitive luminance distributions, the current implementation used DFIG
receptive and projective fields limited to a single cell directly adjacent
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Figure 5: A battery of test stimuli. Various luminance stimuli and the associated
human psychophysical brightness percepts are shown in the first two columns.
The last two columns show the brightness predictions of the GT88 model and
the DFIG model, respectively. The DFIG model performs well for all stimuli,
whereas the GT88 model performs well only for (a) through (h).

to the boundary. In general, the DFIG projection field should coincide
with the spatial scale of the FCS, which would allow thick boundaries
and slower diffusion to be reinstated, which in turn would allow the DFI
model to count the Mach Band effects and the Chevreul illusion effects
as successes just as the GT88 model did.

The DFI theory is not wedded to the particular mechanism described
here. The DFIG is only one of a number of local mechanisms that can
affect global brightness perception. One alternative mechanism could
employ facilitation of the FCS cells that project to the filling-in layer,
such that the gain of the FCS signal is proportional to the activation of
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the adjacent filling-in region. By using the same FCS projection field, the
DFI and FCS spatial scales are guaranteed to be the same.

6.2 Comparison with Alternative Approaches. Previous attempts to
deal with the transitivity problem have involved symbolic rule based sys-
tems such as MIRAGE (Watt and Morgan 1985) and MIDAAS (Kingdom
and Moulden 1992). The DFIG model can in some ways be considered a
neural implementation of the symbolic brightness rule for steps.

There are several other possible solutions to the problem of transi-
tivity. One solution may be to combine contrast information obtained
at multiple spatial scales. It is clear that multiple spatial channels op-
erate in parallel in the visual system (Wilson et al. 1990) and they have
been qualitatively discussed by Grossberg (1987a). When Arend made
a critique of an early version of the BCS/FCS (Grossberg 1983) because
of its inability to handle all of the cases in the test set, Grossberg used
a multiple spatial scale justification as a rejoinder; however, simulations
have yet to appear. It should be noted that the Kingdom and Moulden
(1992) model used multiple spatial scales, but symbolic brightness step
rules were still required to handle the transitive cases.

Another solution may be to allow some direct-intensity information,
as well as the contrast-intensity information. Some researchers believe
that the retinal ganglion cells may transmit at least a little direct-intensity
information in addition to the contrast-intensity information that most
strongly affects them. This type of absolute intensity information has
been used in resistive grid models to solve a related problem—namely,
because the Land (1986) algorithm operates under a gray world assumption:
one obtains grayness from large uniform fields (e.g., the sky) and sudden
appearance of color when objects appear (e.g., a few birds fly over).
Within the framework of the retinex model, Moore and colleagues have
employed a homomorphic-filter transfer function that is itself a function
of local “edginess” in the stimulus, so that contrast information is used
when it is available; otherwise direct information is used (Moore ef al.
1991a,b).

Direct intensity information has been incorporated into a variant of
the BCS/FCS developed by Neumann (1993), who points out that the
shunting equations (equations 4.1 and 4.2) allow for a scaled low-pass
filter encoding of stimulus luminance distributions, as well as providing
saturation levels for the DOG contrast response. Neumann argues that
the ON- and OFF-pair provide multiplexed contrast (polarity) and lu-
minance information. His model has demonstrated some successes with
actual luminance steps; however, it does not appear that this or any di-
rect intensity model can ever account for the brightness illusions such
as the brightness staircase perception from multiple cusps. It is still far
from certain that sufficient direct intensity information is actually trans-
mitted to the brain, and retinal stabilization experiments argue against
its significance.
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7 Conclusion

It has been demonstrated that the directional filling-in (DFI) extension to
traditional filling-in theory provides more accurate predictions of percep-
tual brightness from a variety of luminance stimuli, particularly with the
class of stimuli that has successive luminance steps or cusps in the same
direction. The entire set of brightness experiments described by Arend
etal. (1971) for assessing brightness models is simulated here for the first
time using the BCS/FCS model with the DFIG augmentation; moreover,
it is accomplished within a single spatial scale. Finally, the DFI theory
provides a new teleology for the parallel ON- and OFF-channels. DFI is
of course not limited to brightness perception—it should apply equally
well to any feature that is perceived to fill in, including color, depth, and
texture.

8 Appendix: Parameters

The parameters in parentheses refer to the equations in Grossberg and
Todorovi¢ (1988). The GT88 parameters used in all simulations shown in
this paper are
(A) P, =1; (B) D, =90; (C) C =4; (D) H, = 60; (E) E=0.5;
(L) L=5; (@) Acenter) = 1; (8) Ajsurround) = 8; (M) Ps = 10; & = 100,000;
e=100;v=1;k =10; k; =1; 9 =5.
The DFIG parameters used in all simulations shown in this paper are

(A) P,=0.1;(B) D, =25, (C) C=1.0; (D) H, =1.0; (E}) E=25;

(L) L =0.001; (o) Accenter) = 1; (B) Asurround) = 8; (M) Ps = 1; é = 500,000;
e = 500,000;

vy=1k =1; kp =0.0001; ¥ = 1; ky = 10; Oyx = 0.0; O = 0.02.

In Figure 5, the width of the input layer and the neural fields were
all 150 processing units (cells), except for Figure 51 that used a width of
118. The stimulus in Figure 51 was constructed to illustrate an interesting
brightness inversion that can occur in the GT88 model in certain input
parameter ranges. Since the brightness percepts in Figure 5i and 5j are
the same and represent half of a rotating disk, the percept for Figure 51
was obtained by flipping one and concatenating it to the other.
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